
WHITE PAPER

MODERN STREAM PROCESSING
USING STREAMING SQL
Democratizing Real-Time Data Access Across the Enterprise

STREAMING SQL

WHITE PAPER

2 Modern Stream Processing Using Streaming SQL

Table of Contents

Overview	 3

Streaming architectures today	 3

The messaging system	 3

The stream processing system	 4

Streaming SQL	 4

Time	 6

Schema	 6

Continuous results	 6

Materialized views	 7

Wrapping it up	 8

WHITE PAPER

3 Modern Stream Processing Using Streaming SQL

Overview
During the technology boom of the last two decades, a trend has come into focus: data is the
lifeblood of a modern company and nearly every company is, essentially, a data company.
Organizations have realized that investing in data systems and infrastructure can make them
more competitive in their marketplaces and allow for new and exciting innovations.

In the last few years, this paradigm has exploded as it has become clear that streaming, or
real-time, data inherently has maximum value. Organizations can add streaming data systems
to their arsenal and massively boost their ability to provide highly differentiated, competitive,
and compelling user experiences.

Overlapping this trend is the popularity to generate data using machines and cloud computing.
The Internet of Things (IoT) is an obvious example, but lesser known is the trend to instrument
everything in your business—every web click, visitor session, page view, purchase, interaction,
chat message, all of it. In 1995, companies stored who the customer was and what they
purchased. In 2021, companies store every single interaction they have with the business—
from the manufacturing of the product to data being generated as the product is used. In fact,
companies are being created because of streaming data, and without it, they wouldn’t exist.

But, the velocity and volume of streaming data is massive, which has dictated that new
architectures in data systems be invented. Ingesting the firehose of data, distilling down the
useful parts, and routing it to this new breed of applications requires new and specialized
designs. Because these streaming systems are not siloed, they are typically used alongside
and in conjunction with more traditional technologies like relational database systems
(PostgreSQL, MySQL, Oracle), data lakes/data warehouse (Hive, Impala), or even NoSQL
systems (MongoDB, Elastic).

Further, the modern enterprise is on a collision course between the desire to capture data at an
increasing rate and the ability to process that data. Gaining access to streaming data for
immediate processing requires special skills in Java, Scala or similar languages. Plain old
Structured Query Language (SQL) can be used to query such data once it has landed into a
SQL-compatible store. Given the popularity of SQL skills across the industry over other
specialized skills, it would be ideal to query real-time data with just SQL while it was still in the
streaming system. And thus, Streaming SQL was born. Streaming SQL solves this problem by
continuously running the SQL processes on the boundless stream of business data.

Streaming Architectures Today
A modern stream processing architecture consists of a myriad of components—including
systems that provide robust ingestion, schema definition and lineage, security and
governance, and more. In general, the three key parts of such an architecture are:

•	 Data ingestion that acquires the data from different streaming sources and orchestrates and
augments the data from other enterprise sources

•	 A messaging system that will guarantee delivery and track consumption of messages by
various consumers

•	 A stream processing system that will allow for creating computations using these messages

While the first tenet (data ingestion) is fairly easily done with powerful engines like Apache NiFi,
the real challenge lies in how that data is consumed in the enterprise in real-time. For this
purpose, we will focus on the other two tenets in this paper.

The Messaging System
Append-only distributed log data systems or messaging systems like Apache Kafka and Apache
Pulsar have provided relatively simple, scalable, and high-performance architectures for
managing the input/output and storage for streams of data. Architectures differ, but a common

https://www.cloudera.com/products/open-source/apache-hadoop/apache-kafka.html

WHITE PAPER

4 Modern Stream Processing Using Streaming SQL

design trait is that these systems allow for the persistence of data at a very high volume and
concurrency, but they give up things like transactional semantics. Typically, they allow for
various durability guarantees and allow capabilities from “at least once” to “exactly once”
processing. They generally do this via an append only, message based paradigm.

In the case of Kafka, it provides a massively scalable and redundant architecture coupled with
straightforward APIs. Data is organized by a namespace called a topic and supports highly
concurrent writes and reads. High performance and scalability are provided using a partitioning
scheme. Programs can write (produce) and read (consume) data via language-specific drivers.
The data can be in various formats with Apache AVRO and JSON being two common ones.

Messaging systems give us part of a solution for most organizations: APIs to write and read
data in an insanely fast, yet durable, manner.

Now, let us look at how this data is processed by stream processing engines.

The Stream Processing System
The stream processing paradigm was invented to perform continuous parallel computations
on streams of data. Stream processors are programs that interact with the streams of data—
performing a computation or mutating the data in the flow of data. You don’t have to use
stream processors in combination with a messaging system, but when you do, they are
massively powerful and unlock amazing data processing potential.

Stream processing frameworks present an API for writing processors that run in parallel to
perform computations and to aggregate and package data in a usable format for a business
or application to consume. Oftentimes these processors are called jobs. Stream processing
frameworks like Apache Flink, Samza, and Storm do things like manage state, handle
interprocess communications, provide high availability/restart-ability, and scalability of groups
of jobs. Jobs can also be created as independent processors using APIs like Kstreams where
Kafka itself is used for many of these functions.

Stream processing jobs are typically written using the specific API of the processing framework
itself, and Java and Scala are prevalent languages for this. The APIs tend to be fantastically
powerful and rich. For instance, in the case of Apache Flink, there are multiple APIs with various
degrees of functionality and complexity. They range from very low-level operations
(datastream API), up to a higher level (SQL API).

Stream processors tend to process data from an input (source) to an output (sink). Typical
sources are Apache Kafka or AWS Kinesis. Typical sinks can be anything from Kafka to
traditional relational database systems (RDBMS) like PostgreSQL, or distributed stores like
Apache Druid or Hive, and even distributed file systems like Amazon S3. Jobs are chained in
process (parsed to a DAG or Directed Acyclic Graph) or extra-process by using a sink as a
source for an entirely different job. Creating chains of these processors is called a data pipeline.

Streaming SQL
Streaming SQL—sometimes called Continuous SQL, StreamSQL, Continuous Query, Real-
Time SQL, or even “Push SQL”—is the usage of SQL for stream processing. SQL is inherently
suitable for stream processing as the semantics and grammar of the language are naturally
designed to ask for data in a declarative way. Moreover, relational SQL has the characteristic of
using a set of tuples with types (called relations or tables) to express the schema of the data.
These relations fundamentally differ from traditional RDBMS relations; because, as streams,
they must have a time element. Because of SQL’s rich history, it is widely known and easy to
write. Developers, data engineers, data scientists, and others do not need to use complicated,
low-level APIs to create processors. They can create them in SQL. More importantly, they can
issue SQL against the stream of data and iterate building up statements in development mode.
This allows them to explore and reason about the data stream itself using a familiar paradigm.

“SQL is inherently suitable for
stream processing as the
semantics and grammar of the
language are naturally
designed to ask for data in a
declarative way.”

https://flink.apache.org/
http://samza.apache.org/
https://storm.apache.org/

WHITE PAPER

5 Modern Stream Processing Using Streaming SQL

Streaming SQL should be familiar to anyone who has used SQL with a RDBMS, but it does have
some important differences.

In an RDBMS, SQL is interpreted and validated, an execution plan is created, a cursor is
spawned, results are gathered into that cursor, and then iterated over for a point in time picture
of the data. This picture is a result set, it has a start and an end.

The phasing is described as parse, execute, and fetch:

•	 Parse—Validate the SQL statement, create an execution plan, give feedback to the user

•	 Execute—Run the SQL statement using the execution plan

•	 Fetch—Open a cursor and return the data to the user, closing the cursor when the data is
done being returned

In contrast, Streaming SQL queries continuously process results to a sink of some type.
The SQL statement is interpreted and validated against a schema (the set of tuples).
The statement is then executed and the results matching the criteria are continuously
returned. Jobs defined in SQL look a lot like regular stream processing jobs—the difference
being they were created using SQL vs something like Java, Scala or python. Data being
emitted via Streaming SQL are continuous results—there is a beginning, but no end.
A boundless stream of tuples.
•	 Parse—Validate the SQL statement, give feedback to the user

•	 Execute—Run the SQL statement

•	 Continuously Process—Push the results of the query to a sink

Streaming SQL looks a lot like standard SQL:

-- detect fraudulent auths
SELECT
COUNT(*) AS auth_count,
MAX(amount) AS max_amount,
TUMBLE_END(eventTimestamp, interval ‘1’ second) AS ts_end
FROM paymentauths
WHERE amount > 10
GROUP BY card, TUMBLE(eventTimestamp, interval ‘1’ second)
HAVING COUNT(*) > 2;

DATABASE RESULT SET APPLICATIONSQL QUERY

SOURCE RESULTS SINKCONTINUOUS SQL

“Data being emitted via
Streaming SQL are continuous
results—there is a beginning,
but no end.”

WHITE PAPER

6 Modern Stream Processing Using Streaming SQL

Time
One critical aspect of streaming SQL that differentiates itself from traditional SQL is the aspect
of time. Stream processing systems must support grammar that allows declaring the time
boundary or window that the data should be returned over. For instance, it’s common to
aggregate data over a time window that tumbles second to second.

-- group by key, and tumbling window interval
GROUP BY card, TUMBLE(eventTimestamp, interval ‘1’ second)

Time can be expressed as “ingestion time”, “event time” or “processing time”. In many stream
processing systems like Flink, the distributed log system will automatically capture ingestion
time, and it’s up to the user to create a field with event time. Processing time can be generated
by the processing system logic itself. Performing calculations over time periods requires state
management in the underlying processing system. Time is also important in identifying and
processing late arriving data—these systems are distributed event processing systems. No
serious streaming architecture could ignore highly asynchronous and late arriving data.

Schema
Messaging systems like Kafka don’t inherently enforce a schema on the data flowing through it.
They ingest and store messages over time, and data can be in any format. Clearly, without
some known schema, data would be a mess and near impossible to query or filter. Thus, there
must be some schema assigned to the data. Common formats are JSON and AVRO. In the case
of AVRO, schemas are defined and versioned using a separate storage system. With Apache
Kafka, drivers are schema-aware and can enforce compliance at produce-time validating
against a central repository (like Schema Registry). In the case of JSON, a schema must be
defined in order to query by values nested in the data structure, as well as assign types. In order
to run Streaming SQL, a schema must exist. This schema is the tuple and types that are part of
the query (the columns and data types). This schema also provides the definition the parser
will validate the statement against for validity (naming, operators, types, etc).

-- example schema for paymentauths
card varchar
amount integer
eventTimestamp timestamp

Running SQL against boundless streams of data requires a bit of a mindset change. While
much of the SQL grammar remains the same, how the queries work, the results that are shown,
and the overall processing paradigm is different than traditional RDBMS systems. Filters,
subqueries, joins, functions, literals and all the myriad of useful language features generally
exist but may have different behaviors. New constructs around time, specifically windowing,
are introduced.

Continuous results
Another key difference between Streaming SQL and traditional SQL (and stream processing in
general) is how the results of the query are handled. In traditional SQL, a result set is returned
to the calling application. Using Streaming SQL, the results are continuously returned to a sink.
Sinks can be streams of data like Kafka topics, or sinks can be more traditional systems like a
RDBMS. More than one stream can utilize the same sink, sometimes joined with other streams.

“Stream processing systems
must support grammar that
allows declaring the time
boundary or window that the
data should be returned over.
For instance, it’s common to
aggregate data over a time
window that tumbles second
to second.”

https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-event-time.html
https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-stateful-applications.html
https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-stateful-applications.html

WHITE PAPER

7 Modern Stream Processing Using Streaming SQL

But careful consideration must be given to how the results of a stream of data are ultimately
persisted. An impedance mismatch exists between streams and traditional storage systems
like databases. Streams are a boundless set of tuples, and databases (generally) store the
latest state of a tuple. This impedance mismatch must be handled in some manner. Systems
like Apache Flink provide a number of handlers for sinks that describe the behavior of the
transition. Typical constructs are:

•	 Append—Every message is a new insert
•	 Upsert—Update by key, insert if key missing (idempotent)
•	 Retract—Upsert with delete if key no longer present in window

Which option to choose is highly dependent on the type of the sink, its native capabilities, and
the use case. For instance, a RDBMS could work with a retract stream, but a time-series DB
would only support append only.

Materialized views
Recently, the ability to create materialized views on streams (streaming materialized views)
has been an important development in stream processing systems. Materialized views blur the
line between streaming systems and traditional databases. Similar to how traditional
databases have worked for decades, materialized views are continuously updated and always
represent the latest state by a given key—except they are declared via streaming SQL. When
you create a view you define the creation query in SQL, define a primary key, and some basic
rules about cleanup, null handling, etc. The resulting view is a picture of events at a given point
in time—something typically missing or resource expensive to create. This capability is
important to modern developers who need to query (typically called a pull-query) this view for
their applications. Depending on the particular platform, materialized views may not require a
database at al—something that drastically reduces complexity, costs, and latency.

Materializing data requires a persistent storage mechanism. Some systems use simple key/
value stores, others more complex strategies. This choice is critical because it defines the
capabilities the developer can expect from the view engine. In either case—materialized views
should be thought of as more of a data cache than a full fledged database. If a developer needs
full historical data or the entire event flow—then a traditional database might be the right
choice. However, if they need to aggregate down a massive data flow to present a low latency
data set for an application—that is bread and butter for streaming materialized views.

For example, perhaps the developer is building a javascript application that is plotting aircraft
locations on a map using streamed ADSB data. The source data comes in many times a second
in JSON format:

{“icao”: “AB2404”, “altitude”: “37025”},
{“icao”: “AB2404”, “lat”: 37.529572, “lon”: -122.265806},
{“icao”: “AB2404”, “altitude”: “37095”},
{“icao”: “AB2404”, “altitude”: “37125”},
{“icao”: “AB2404”, “lat”: 37.530032, “lon”: -122.265130},
...

SOURCE

Pull

QUERY
(SQL, REST, ETC.)

APPLICATIONPERSISTENT
STORAGE

Materialized ViewData Stream

CONTINUOUS SQL

“Materialized views are
continuously updated and
always represent the latest
state by a given key—except
they are declared via
streaming SQL.”

WHITE PAPER

Cloudera, Inc.  5470 Great America Pkwy, Santa Clara, CA 95054 USA  cloudera.com

© 2021 Cloudera, Inc. All rights reserved. Cloudera and the Cloudera logo are trademarks or registered trademarks
of Cloudera Inc. in the USA and other countries. All other trademarks are the property of their respective companies.
Information is subject to change without notice.  4474-001  2021

You will notice each message is incomplete—only a portion of the full schema is presented
each message. We need to aggregate the data by aircraft ID, and use the latest version of
location pairs and altitude by timestamp. Something like this:

-- aggregate over window
CREATE MATERIALIZED VIEW aircraft_locations
AS
SELECT icao, -- unique key
FIRST_VALUE(lat) OVER w AS lat,
FIRST_VALUE(lon) OVER w AS lon,
FIRST_VALUE(altitude) OVER w AS lon,
eventTimestamp as TS -- use embedded kafka timestamp
FROM airplanes
WINDOW w AS (
 PARTITION BY icao -- unique key
 ORDER BY eventTimestamp
 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
);

This statement materializes the data into a view that can be queried (sometimes referred to
as a “pull query”) using traditional and widely available tooling, communications protocols,
and APIs. This can be pulled into a notebook/pandas for building a ML model, or maybe used
to plot a map using javascript.

Wrapping it up
Adding streaming data systems to an enterprise architecture can massively boost the ability
to provide highly differentiated, competitive, and compelling user experiences. Messaging
systems and stream processors are the building blocks that allow streaming SQL to open up
new opportunities—in a simple yet powerful way. Lastly, materializing data into views for
tooling and applications provides highly usable datasets for a variety of streaming data
powered applications making end-to-end applications much more simplistic to create.
The net effect is a processing architecture that can handle massive amounts of data—yet is
easily democratized within the organization—maximizing value and delighting customers.

About Cloudera
At Cloudera, we believe that data can
make what is impossible today, possible
tomorrow. We empower people to
transform complex data into clear and
actionable insights. Cloudera delivers
an enterprise data cloud for any data,
anywhere, from the Edge to AI. Powered
by the relentless innovation of the open
source community, Cloudera advances
digital transformation for the world’s
largest enterprises.

Learn more at  cloudera.com

http://cloudera.com
http://cloudera.com
https://blog.cloudera.com/using-sql-to-democratize-streaming-data/
http://cloudera.com

