
WHITE PAPER

CHOOSE THE RIGHT STREAM
PROCESSING ENGINE FOR YOUR
DATA NEEDS
Technical and Operational Factors that are
Crucial to the Decision Making Process

DATA IN
MOTION

WHITE PAPER

2 Choose the Right Stream Processing Engine for Your Data Needs

Process Data Streams at the Speed of Business and at
the Scale of IT
Business opportunities that directly impact revenue or boost operational efficiency need to be
addressed in near real-time. Digital transformation initiatives and the advancement in mobility,
IoT and streaming technologies has led to enterprises being inundated with data. Key business
requirements determine how such high volumes of high-speed data should be processed in
real-time to provide actionable intelligence. This directly leads to IT having to evaluate which
stream processing engine is best fit for purpose for their enterprise needs. Other determining
factors include return on investment, its dexterity to be applied across multiple use cases, and
its level of maturity for enterprise wide adoption.

This paper is meant to help technology architects and developers choose the right stream
processing engine for their needs. We do this by analyzing key technical and operational
differentiators between four modern stream processing engines from the Apache open
source community:
• Kafka Streams
• Spark Structured Streaming
• Storm with Trident
• Flink

This paper also highlights some of the capabilities that are key to any data streaming use case,
such as:
• Watermarks to handle late and out of order delivery
• Windowing semantics to structure the streams
• Complex event processing
• Capabilities that enhance operational efficiency

Cloudera offers all of the engines listed above, because we believe that you should use the best
tool for the job. Sometimes that tool is a very simple one, but more often than not, you will need
the advanced capabilities for your specific use cases.

There are a variety of ways by which to address data stream processing challenges. The solution
comes down to the fundamental way in which the engine works and how your organization
implements it.

1

2

3

 Cloudera Manager provides one view to manage all of your resources including stream processing engines.
Here we see Flink (1), Kafka (2), and Spark (3) resources in one comprehensive view. Source: Cloudera.

WHITE PAPER

3 Choose the Right Stream Processing Engine for Your Data Needs

Table of Contents

Address Challenges Through Informed Decision Making 4

Streaming Challenges 4

Decision Making Process: Technology and Operational Considerations 5

Technology Considerations for Stream Processing Engine Evaluation 5

Functional Aspects 5

Developmental Control 6

Implementation and Beyond 6

Operational Considerations for Stream Processing Engine Evaluation 8

Enterprise Adoption 8

Enterprise Operations 8

Spark, Kafka, or Flink? Which to Use? 9

Flink Use Cases 9

Cybersecurity and Log Processing 9

Outage Classification for Telecom Companies 10

Financial Services: Mainframe Offloading 10

IoT for Manufacturing 10

Technical Features Table 11

Operational Features Table 12

Customer Success 13

Ensure Fit for Purpose and Enterprise Wide Adoption 13

WHITE PAPER

4 Choose the Right Stream Processing Engine for Your Data Needs

Address Challenges Through Informed Decision Making
Global digitization has resulted in a vast array of new products and services with such high
levels of convenience that it fuels a continuous loop of greater expectations for immediacy.
Next day delivery and real-time payments are demands driven by consumers at the point of
service that then pressures downstream services to respond faster. Processing and analyzing
billions of events per second across geographies is becoming an ordinary affair.

In response, technology teams have been pivoting from large monolithic database
architectures to event driven applications and microservices design as a way to reduce the
inevitable latency of inputs and outputs across networks by bringing the state of an event
closer to the application itself.

Central to this effort are modern data stream processing engines like Storm with Trident, Kafka
Streams, Spark Structured Streaming, and Flink.The Storm/Trident framework is the oldest,
while Kafka Streams is the newest. The Spark Structured Streaming community is large while
Flink’s is growing rapidly. Knowledge of an engine’s development community can help gauge
how self-sufficient and productive your team can be.

The engine that is best for you depends on your organization’s use cases, team makeup, and various
technology and operational factors.This paper is meant to help you in that evaluation process.

Streaming Challenges
Below is a reminder of streaming challenges you’ve undoubtedly had or will come across.

Event time and processing time—The chances that streaming events come in without any
delays and with predictable patterns is low, because you can’t control the myriad of input
sources that exist across collections of networks that vary in type and quality. Even with the
very best networks and the fastest collection mechanisms, there will always be latency
between the time an event happens in the real world (event time) and the time your system
processes it (processing time).

Bounded and unbounded streams—Bounded streams have a beginning and an end, so it is easy
to reason about time and correctly sort events, akin to batch. Unbounded streams are harder
to reason about because, without an end, you don’t know if another live event is yet to come.
Calculations, aggregations or pattern detection in unbounded streams is very tricky. To handle
both scenarios, it is helpful to follow a “streaming first” principle (see The “streaming first”
approach), and to consider capabilities like watermarks to handle late and out of order events
(see Watermarks to handle late delivery on page 5).

BOUNDED AND UNBOUNDED STREAMS

BOUNDED
STREAM

BOUNDED
STREAM

START OF
THE STREAM FUTUREPAST NOW

UNBOUNDED STREAM

UNBOUNDED STREAM

The “streaming first” approach
Stream processing engines have followed
different paths in their approach to solving
unique time reasoning challenges.

Flink is a “streaming first” distributed
system. This means that it has always
focused on solving the difficult unbounded
stream use cases over bounded stream
and batch scenarios.

It turns out that algorithms that work on
unbounded streams, also work on bounded
streams by treating the latter as a special
case of the former. As a result, Flink
addresses micro-batch use cases as well.

WHITE PAPER

5 Choose the Right Stream Processing Engine for Your Data Needs

Simple and complex events—Complex events are derived from simple events that have been
aggregated, patterned, and evaluated to trigger a response or present a result, often on data
that continuously moves under your feet. Decisioning on unbounded streams requires the state
of events to be stored and analyzed.

Stateless and stateful—Stream processing engines excel when analytics require a reassessment
of events within the context of time. That is considered stateful, while stateless represents a
self-contained fire-and-forget paradigm. There are acceptable trade-offs between stateless
high throughput engines and stateful engines that need to address aggregation, enrichment,
and other requirements

Decision Making Process: Technology and Operational Considerations
There is often an overreliance on streaming benchmarks when choosing a stream processing
engine. Benchmarks focus simply on latency, throughput, and hardware utilization and don’t
consider functional requirements or the control that developers would have in effectuating a
solution. Benchmarks also don’t assess important operational, staffing, and other nonfunctional
criteria. The rest of the paper summarizes technology and operational considerations that are
needed to make an informed decision and to foster adoption of the solution across the enterprise.

Technology Considerations for Stream Processing Engine Evaluation
The next section compares the different stream processing engines with regard to functional,
developmental, and implementation considerations.

Functional Aspects
The functional capabilities of stream processing engines as they pertain to approach, streaming
model, and time support are used to solve specific business requirements.

Approach—The type of approaches that development communities took at the inception of
an engine’s development include: “streaming first”, “message broker first”, and “batch first”.
The distinction helps in understanding what the engine was originally meant for.

Both Flink and Storm/Trident took a “streaming first” approach. The former is regarded as a
modern class leader, while the latter is considered legacy architecture.

Spark Structured Streaming followed a “batch first” approach, while Kafka Streams was initially
developed as a “message broker first”. Streaming capabilities are popular add-ons for both.

Streaming model—Earlier, we described the concept of “stateless” and “stateful” and that it is
critical to distinguish between the two, and the trade-offs between throughput and latency.
Natively, Storm utilizes a stateless streaming model and is very useful if you have simple low
latency use cases. Its combination with Trident enables some stateful capabilities.

Flink, Kafka Streams, and Spark Structured Streaming are all stateful, but with slight differences.
Having taken a “batch first” approach, Spark Structured streaming handles events as micro-
batches and is good when high throughput is necessary but low latency is not a big requirement.
The two other stateful engines differ in how they store state. Kafka Streams depends on the
Kafka ecosystem, while Flink provides more storage options. Both process messages an event
at a time and are considered low latency solutions.

Time support—All of the stream processing engines described in this paper are able to
distinguish event time from processing time. The nuance is in how much control you have to
address some of the trickier use cases. Flink provides a great deal of control with capabilities
such as watermarking and session windows (see Watermarks to handle late delivery and
Window semantics on page 7).

Watermarks to handle late delivery
Watermarks are a comprehensive way of
handling late or out of order arrivals by
providing a set of trigger messages that are
injected alongside the data stream.

For unbounded streams, in which you don’t
have a definitive end, watermarks delineate
points at which you would expect all of the
events to have occurred. It is from here that
you can establish some logic.

A collection of watermarks creates
windows, and this is what gives your
streams the structure to which reasoning
can be applied (see Windows semantics
on page 7).

Flink provides a lot of control as to how
watermarks are generated. This provides
more options as to how completely you
want to capture events that may or may not
arrive. This mechanism can also extend to
very sophisticated functionality like
leveraging upstream and downstream
materialized views or using batch engines
to reprocess and incorporate late data.

WHITE PAPER

6 Choose the Right Stream Processing Engine for Your Data Needs

Developmental Control
A common task in every data processing use case is to import data from one or multiple
systems, apply transformations, and then export results to another system. Considering the
ubiquitousness of streaming data applications, unified integration with machine learning,
graph databases, and complex event processing is becoming more common.

Processing abstraction—To help your engineering team be productively focused on business
logic instead of advanced streaming concepts, it’s important to evaluate the stream processing
engine’s processing abstraction capabilities.

Spark Structured streaming is strong with machine learning due to its set of libraries. If you are
already developing within a Spark ecosystem, the stream processing engine decision is that
much easier.

Special attention should be paid to the engine’s SQL abstraction. From an analytics democratization
point of view, SQL abstraction is a very important basis for comparison. While many senior
developers prefer sophisticated languages like Scala for complex analytic work, the expressiveness
and simplicity of SQL can get the job done more easily and it is accessible to a wider range of
developer resources.

When it comes to the comparison on the basis of SQL, the more standard the better. Flink has
the most mature and production tested OpenSource SQL-on-Streams implementation and is
fully ANSI compliant. Kafka’s KSQL is maturing nicely, but is not fully OpenSource, not ANSI
compliant, and not as feature rich. Spark Structured Streaming SQL, though well adopted, has
ANSI compliance dating back to 2003. Storm/Trident is in the SQL experimental stages.

Implementation and Beyond
Application development is only as good as its implementation. Below, we cite aspects that
need to be considered to move beyond the idea and development stage.

Delivery guarantee—This is a key factor to consider as it relates to your expectations of
latency, throughput, correctness, and fault tolerance of message delivery.

At-least-once delivery may result in duplicate messages after multiple delivery attempts but
you know at least one succeeds. Performance is high with the least overhead, because the
state of delivery tracking is not stored. It runs in a fire-and-forget fashion, sufficing low latency,
high throughput, guaranteed message requirements but with little regard to data duplication.

For more exacting applications, such as financial transactions, it is important that messages
are received and processed exactly-once. This requires retries to counter transport losses,
which means keeping state at the sending end and having an acknowledgement mechanism
at the receiving end. Exactly-once is optimal in terms of correctness and fault tolerance, but
comes at the expense of added latency.

All the engines described in this paper provide exactly-once delivery guarantee, though Kafka
Streams is limited to the Kafka ecosystem and can’t control downstream systems. Flink and
Spark Structured Streams guarantee exactly-once delivery from any upstream source but also
with downstream platforms in some cases.

State management—The aforementioned trade-off between exactly-once delivery guarantee
and the inevitable latency of state storage may drive the selection process based on the state
management capabilities that come with the engine.

For example, Kafka Streams provides some stateful capabilities, the difference is that it doesn’t
provide a scheduler or full framework out-of-the-box. While it provides efficient ways of writing
simple applications, you are left to your own devices on how to launch, run, orchestrate and
operate those applications.

WHITE PAPER

7 Choose the Right Stream Processing Engine for Your Data Needs

Kafka Streams is also good for things that are Kafka centric, because it tends to rely heavily on
Kafka storage for state. Like Flink, it uses a local RocksDB but checkpoints the state as a Kafka
topic and that limits flexibility as to how you store and access the history of that state. Within
a Kafka ecosystem, a good linear access mechanism is provided, making everything nice and
tame. This works great for simple use cases, but it doesn’t provide quite the flexibility and
operational capabilities as do some of the other engines.

Fault tolerance/resilience—The demand to mitigate operational disruption is so strong that the
concept of “resiliency” attracts regulatory oversight across industries. Streaming architecture
capabilities such as checkpointing, savepoints, redistribution, and state management are crucial
to the stream processing engine selection process.

Spark Structured Streaming and Storm/Trident have built-in capabilities, while Kafka Streams
requires you to “build your own”, using ZooKeeper to replace a failed broker for example.

Flink’s fault tolerance mechanism uses checkpoints to draw consistent snapshots to which the
system can fall back in case of a failure. The aforementioned state management capabilities
ensure that even in the presence of failures, the program’s state will eventually reflect every
record from the data stream exactly-once.

The maturity of checkpointing in Flink provides a number of operational benefits, including
bootstrapping new versions of jobs, moving them to other clusters, simplifying upgrades of
applications and the clusters running them, and moving workloads between cloud and
on-premises environments. This approach is one that is starting to be adopted by other stream
processing engine communities.

Window semantics
Flink allows you to customize a window structure so you are not limited to pure linear time. You can define it by
gaps between events or by the number of events using Session Windows for example. There is a lot of flexibility
in how events are assigned to different windows prior to processing.

Windows are logically necessary to the analytics that you are likely to perform because it provides structure on
which to base the analytic.

Two other windowing examples are tumbling windows (that slices a stream into even chunks) or sliding
windows (that enable your aggregations and analytics to move with time as illustrated below).

SESSION WINDOWS

Time

TUMBLING
WINDOWS

SLIDING
WINDOWS

0 1 2 3 4 5 6 7 8 9 10

WHITE PAPER

8 Choose the Right Stream Processing Engine for Your Data Needs

Operational Considerations for Stream Processing Engine Evaluation
All organizations look to control costs by doing more with less. Budget approval for your
selected stream processing engine may be contingent on its utility across streaming pipelines,
reusability of talent, and synergising tech stacks.

Enterprise Adoption
The best application is no good if it can’t be efficiently and safely deployed across your
organization or there is a dependency on hard to find development talent. Effective solutions
are those that can be adopted across the entire enterprise.

Deployment model—There is a better chance of adoption if teams don’t have limited
deployment options. Flink can be deployed in clustered, Kubernetes YARN, Kafka, Docker, S3,
and microservices environments, while Structured Streaming, Kafka Streams, and Storm/
Trident are more limited (see Technical Features Table on page 11). Kafka Streams is the most
lightweight for microservices, at the cost of out-of-the-box features, and the Flink library is
nearly as good.

Community maturity and documentation—To ensure that your developer resources are
self-sufficient and productive, the maturity of the developer community and quality of
documentation is a very important aspect to consider.

Storm/Trident is the oldest framework but the community has been eclipsed by the newer
engines while activity has declined over the years. Kafka Streams is relatively young with very
strong community growth and extensive documentation and examples.

While the Spark Structured Streaming community is large and busy with extensive documentation
and examples, they could use more reviewers and committers, something that Cloudera is
helping to drive forward.

Flink is the fastest growing community with strong research and production deployments.
Documentation and working examples are good and will broaden considerably as the
community matures. As recently as 2019, Flink was the most active community by discussion,
and the third most active by code commits. Also, some of the biggest brand name companies
have already invested in large deployments of Flink for their real-time stream processing needs.

Enterprise Operations
If you are looking to establish a legacy of successful, fit for purpose data streaming solutions,
it is important to know that you’ve selected an engine that completely integrates into your
organization’s security framework, provides comprehensive monitoring and metrics, and can
scale up and down in line with business demand.

Enterprise management—At Cloudera, we’ve invested a good deal of our time to integrate
the stream processing engines described in this paper into the Cloudera Data Platform (CDP)
to make sure that they are all enterprise ready for their respective purposes. Both Flink and
Structured Streaming have rich Operations Support Systems (OSS) with enhanced vendor
offerings. Kafka Streams has minimal OSS via some vendor offerings, while Storm/Trident
has even less.

Over time, Cloudera has enhanced Spark Structured Streaming with important metadata,
logging, metrics, and operational capabilities that are also starting to find its way to Flink but,
for now, the former has the edge on CDP.

As it relates to Kafka, the original security implementation was done by Cloudera (via Hortonworks
XASecure) and still provides leading security capabilities via scale-tested role-based and
attribute-based access control models, and integrated data governance with Apache Atlas
in CDP.

The other advantage of CDP for these stream processing engines is the fine-grained integrated
single pane of glass security control.

Complex Event Processing (CEP)
To process real-time events and extract
information from which to identify more
meaningful events, like understanding
behaviors for example, is probably one of
the most interesting things you can do.

Flink’s statefulness and window handling
capabilities is the foundation on which
advanced CEP is crafted. What makes Flink
all the more compelling is that CEP is
accessible to a wider range of developer
resources through standard SQL
abstraction.

For example, the Match_Recognize SQL
statement can be very helpful when you
are looking for patterns built up through
sequences of events that can’t be
distinguished by simple counting methods.

The standard SQL abstraction of Flink
makes it a compelling choice for use cases
that require “simple” complex event
processing.

https://www.cloudera.com/products/cloudera-data-platform.html
https://www.cloudera.com/products/open-source/apache-hadoop/apache-atlas.html

WHITE PAPER

9 Choose the Right Stream Processing Engine for Your Data Needs

Scaling up / Scaling down—Another consideration is that streaming workflows tend to be
multi-modal and unbalanced throughout the day, so the scaling capabilities are absolutely
crucial. Flink and Spark Structured Streaming are developing auto-scaling approaches to
automatically maintain steady and predictable performance. They each have a solid
orchestration platform underneath, which tends to give them an edge over the “build your own”
type of approach that you get with Kafka Streams. Management tools help to scale Storm/
Trident but tuning is challenging. If your application is tuned for “millions” then performance
could be hurt for the “thousands”.

Spark, Kafka, or Flink? Which to Use?
Boiling this down to high level guidance and decision making points, below is the heuristic that
Cloudera tends to work with when advising customers.

REVIEW OF THREE MODERN STREAM PROCESSING ENGINES

Guidance
Spark Structured Streaming is best
for developer accessibility and
whole platform solutions where low
latency and advanced streaming
are not required, e.g. combining
batch and stream where response
time is measured in seconds to
minutes.

Guidance
Kafka Streams is best for Kafka
Streams-only architectures without
advanced streaming features

Guidance
Flink is best for covering the full
range of streaming pipeline
requirements

Decision Making Points
• Spark Structured Streaming

is already standard at your
organization

• You need a unified batch/stream
solution

• The highest levels of throughput
is crucial

• Low latency is not necessary
• Advanced time/state features

would be overkill

Decision Making Points
• You only need microservices
• Throughput is essential
• Low latency is crucial
• Time/state features are not

needed out-of-the-box
• Application operational and

resilience requirements are
simple or handled elsewhere

Decision Making Points
• You need flexibility across

microservices, batch and
streaming

• High throughput is necessary
• Low latency is crucial
• Use cases call for advanced

windowing and state capabilities
• You are not scared of new

solutions, especially those that
are best-in-class

Both Flink and Kafka can be used as libraries in microservice architectures

Flink Use Cases
To get a practical understanding of how Flink is used in the real world, we have described a
variety of use cases below.

Cybersecurity and Log Processing
A classic streaming data challenge is to identify and act upon intrusions and fraudulent events
that are hidden within terabytes of dynamic machine logs. Throughput and latency are
obviously important factors to consider because you want to identify an issue as quickly as
possible. But effective action against criminals that doesn’t alienate good customers requires
an understanding of the behaviors of each.

The state management capabilities of Flink is a foundational component to cybersecurity
solutions. From that we are able to leverage the performance benefits that comes from localized
state when fulfilling enrichment functions and complex event processing. Session windows and
watermarking supports deep dive investigations into data that is constantly moving.

Operational Efficiency
How would you understand what
contributed to an unexpected value
in a complex calculation while data
continues to stream in?

Use the state processing API in Flink to
recreate states as transactional snapshots
and then dig in as much as needed to
explain the origin and reasoning behind
that dynamic calculation.

Checkpoints and savepoints are key to
understanding how this works.

A Checkpoint provides a recovery
mechanism in case of unexpected job
failures. It creates a consistent image of
the streaming job’s execution state called
a savepoint. You can use savepoints to
stop-and-resume, fork, or update your jobs.

A fundamental aspect of Flink since its
inception has been the separation of the
state into local pieces that are linked
together through consistent checkpointing
levels. This minimizes latency but also
provides all sorts of operational efficiency
gain. For example, you can:
• Deploy new application versions that

are preloaded from the current
production state

• Do accurate A/B testing of new algorithms
because you can easily bring up new
instances against a solid starting point

To deal with supersets of data, the states
saved locally in a high performance key
value store (RocksDB) are checkpointed
down to HDFS, a cloud blob store, or other
durable repository.

WHITE PAPER

10 Choose the Right Stream Processing Engine for Your Data Needs

Outage Classification for Telecom Companies
For a long time, telecom companies have focused on their network infrastructure and
preventative maintenance but often as a reaction to past events. Customer and regulatory
demands require a dynamic approach to predict and mitigate spotty performance and outages.

Adapting network strength and mass availability is crucial and that requires aggregated
analysis on vast amounts of metrics over a wide array of networks to find anomalies, predict
where failures are likely to occur, or even to just record the state of their current network at any
point of time.

5G will only increase the volume and variety of metrics available, so having the ability to scale
and perform analytics on those incoming events quickly is absolutely critical to identifying
problems before customers do.

Financial Services: Mainframe Offloading
Consumers are demanding when it comes to speed of service. Overextended number crunching
mainframes that are not meant for low latency end user interactions are often the bank’s
bottleneck, particularly with the advent of Open Banking directives. The solution has been
to offload customer relationship functions from mainframes to stateful stream processing
engines like Flink. Personalized product offerings based on real-time spending patterns is
an example.

A key driver of success is data consistency. Flink’s exactly-once delivery guarantee ensures
correct accounting of spending behavior and balances. Combining that with complex event
processing on the latest product and marketing data ensures that the right offer is being made
at the right time. The fact that data access, enrichment, and decisioning is local, not external,
enables millisecond level response time.

IoT for Manufacturing
IoT devices streamline supply chain operations within a manufacturing facility. Today,
manufacturers are leveraging advanced monitoring sensors and real-time technologies to
track quality of goods, automate the visual inspection of goods, and customized manufacturing
for individual partners.

Flink’s advanced windowing and state capabilities help to make the best use of sensors that
collect data on machine health and productivity because, in order to diagnose and address
problems before they occur, the sensor data needs to be aggregated and compared to previous
data. Additionally, since IoT in manufacturing often has a diverse pipeline of use cases, the
flexibility of Flink to be applied across microservices, batch, and streaming solutions is important.

WHITE PAPER

11 Choose the Right Stream Processing Engine for Your Data Needs

Technical Features Table
The table below gives technical comparison across four modern stream processing engines. Refer to it when evaluating the functional and
developmental aspects of your project.

TECHNICAL FEATURES

Flink 1.10 Kafka Streams 2.4 Spark Structured
Streaming 2.4

Storm 2.0 and
Storm Trident

Approach, position • Streaming first
 • Modern class-leader

 • Message-broker first
 • Popular streaming add-on

 • Batch first
 • Popular streaming add-on

 • Streaming first
 • Legacy architecture

Streaming model,
throughput, type

 • Stateful
(First class requirement)

 • <500 milliseconds
 • Event-at-a-time

 • Stateful
 • <500 milliseconds
 • Event-at-a-time

 • Stateful
 • Greater than one second
 • Microbatch

 • Natively stateless
 • < 500 milliseconds
 • Event-at-a-time with

stateful plugins

Time support • Event time
 • Processing time
 • Customizable for

greater control

 • Event time
 • Processing time

 • Event time
 • Processing time

 • Event time
 • Processing time

Processing abstractions • Table
 • SQL (ANSI Standard)
 • Complex event processing
 • Graph
 • Machine learning
 • Batch (experimental)

 • Table
 • SQL-like DSL (KSQL)

(not ANSI compliant)
 • No batch

 • Table
 • ANSI SQL:2003 in Spark

Structured Streaming 2.3
 • Graph
 • Machine learning
 • Unified APIs for batch

and stream

 • Streaming only out-of-
the-box

 • SQL- Experimental since
1.2.3

Delivery guarantee • Upstream: Exactly-once
 • Downstream: Some

capabilities depending on
the downstream system

 • Upstream: Exactly-once
 • Kafka Streams only
 • Downstream: No

 • Upstream: Exactly-once
 • Downstream: Some

capabilities depending on
the downstream system

 • Upstream:
 – At-least-once

(out-of-the-box)
 – Exactly-once

(with Trident)
 • Downstream: No

State management • RocksDB
 • Configurable snapshots
 • Queryable

 • BYO RocksDB
 • Snapshot to Kafka

Streams topic
 • Queryable

 • RocksDB Databricks only
 • OSS sync on HDFS

 • External, not out-of-the-box,
at-least-once processing in
stateful operations

Fault tolerance
and resilience

 • Built-in
 • Checkpoints
 • Savepoints
 • Redistributable

 • BYO Microservice • Built-in • Built-in

 Great fit for purpose Fits with some work Fits with a lot of work Not fit for purpose

WHITE PAPER

12 Choose the Right Stream Processing Engine for Your Data Needs

Operational Features Table
The table below gives an operational comparison across four modern stream processing engines. Refer to it when evaluating the
nonfunctional aspects of your project.

OPERATIONAL FEATURES

Flink 1.10 Kafka Streams 2.4 Spark Structured
Streaming 2.4

Storm 2.0 and
Storm Trident

Deployment model • Clustered
 • Kubernetes
 • YARN
 • Kafka
 • Docker
 • S3
 • Microservices

 • Not clustered
 • Kubernetes
 • Microservices

 • Clustered
 • Kubernetes

 • Clustered

Documentation • Good technical
documentation

 • Growing examples
 • Stack Overflow coverage

 • Extensive documentation
 • Extensive examples
 • Stack Overflow coverage

 • Extensive documentation
 • Extensive examples
 • Stack Overflow coverage

 • Good documentation for 1.x

Maturity/community • Smaller but fastest growing
community with strong
research and production
deployments

 • Newest, strong community
with strong growth

 • Spark Structured Streaming
community is strong, but
Streaming is a small, quiet
corner

 • Oldest framework,
community eclipsed by
newer engines

Use cases • Unbounded and bounded
streams

 • Batch
 • Complex event processing
 • IoT
 • Microservices
 • Others

 • Microservice/event driven,
embedded in another
application

 • Unified ETL, semi-RT
processing

 • IoT, complex event
processing

Enterprise management • Rich OSS
 • Enhanced vendor offerings

 • Minimal OSS
 • Some via vendor offerings

 • Rich OSS
 • Enhanced vendor offerings

 • Some integrations

Push button security • Complex
 • Some OSS support
 • Limited vendor offerings

 • Simple, some OSS support,
good vendor offerings

 • Complex
 • Good OSS support
 • Good vendor offerings

 • Complex
 • Good OSS support
 • Good vendor offerings

Logging/metrics • Usual OSS integrations,
some vendor offerings

 • BYO microservices • Good logging integration • Good logging integration

Scaling up/down • Not yet autoscaling, but all
requirements available

 • BYO microservice, scaling
limits (e.g. shuffle sort)

 • Not yet autoscaling, but all
requirements available

 • Management tools help but
tuning is challenging

 Great fit for purpose Fits with some work Fits with a lot of work Not fit for purpose

WHITE PAPER

Cloudera, Inc. 395 Page Mill Road Palo Alto, CA 94306 USA cloudera.com

© 2020 Cloudera, Inc. All rights reserved. Cloudera and the Cloudera logo are trademarks or registered trademarks
of Cloudera Inc. in the USA and other countries. All other trademarks are the property of their respective companies.
Information is subject to change without notice. 3943-001 June 17, 2020

Customer Success
To provide insights into the business impact that can be drawn through a comprehensive
data-in-motion solution, we provide two customer success examples.

1. An international communications company serving consumers and businesses in ten
countries, deployed the Cloudera streaming data platform to tackle a variety of critical
use cases including, stream processing, log aggregation ,and large-scale messaging and
customer insights.

Results included improved overall customer experience through strategic use of data
analysis, reduced infrastructure management costs and TCO, and enabled real-time actions
to improve business outcomes.

2. A large European bank specialising in agriculture financing and sustainability oriented
banking across global markets leveraged Cloudera’s streaming data platform to run
sophisticated real-time algorithms and financial models to help customers manage their
financial obligations, including loan repayments.

By implementing the platform and gaining the ability to stream real-time data, the bank can
now detect warning signals in extremely early stages of where clients may go into default.
Through their new, governed data lake, the bank’s account managers are also able to access
an in-depth overview of customer data, enabling them to generate liquidity overviews and
advise customers on how to avoid defaulting. Through rapid data processing, better models
are created that more accurately predict warning signals.

Ensure Fit for Purpose and Enterprise Wide Adoption
Streaming and time based reasoning applications are confronted with both simple and complex
sets of challenges. Functional business requirements determine how data should be processed
and that, in turn, helps to evaluate which of a number of stream processing engines suffice
your requirements.

This paper described a number of capabilities that would address the most complex of challenges
and handle simple scenarios, while keeping in mind acceptable trade-offs. You don’t want to
over-engineer a solution but you want to know that it can grow to support an evolving business.
To support that growth, there are a number of technical and operational factors that are crucial
to the decision making process.

We also suggested that you take a broad perspective that also considers nonfunctional aspects
such as how your team can deliver on the solution’s promise, how it integrates into your
organization’s security framework, operational processes, support structure, and how it can
scale up and down in line with business demand.

In summary, the view expressed here will help ensure that you choose the right stream
processing engine that is both fit for purpose to the business challenge at hand, and will also
enjoy enterprise wide adoption.

About Cloudera
At Cloudera, we believe that data can
make what is impossible today, possible
tomorrow. We empower people to
transform complex data into clear and
actionable insights. Cloudera delivers
an enterprise data cloud for any data,
anywhere, from the Edge to AI. Powered
by the relentless innovation of the open
source community, Cloudera advances
digital transformation for the world’s
largest enterprises.

Learn more at cloudera.com

Connect with Cloudera
About Cloudera DataFlow:
cloudera.com/cdf

Join the Cloudera Community:
community.cloudera.com

Read about our customers’ successes:
cloudera.com/customers

http://cloudera.com
http://cloudera.com
https://www.cloudera.com/about/customers/ooredoo-kuwait.html
https://www.cloudera.com/content/dam/www/marketing/resources/case-studies/rabobank-success-story.pdf.landing.htm
http://cloudera.com
https://www.cloudera.com/products/cdf.html
http://community.cloudera.com
https://www.cloudera.com/about/customers.html

